Rates of Convergence and Adaptation over Besov Spaces under Pointwise Risk

نویسندگان

  • T. Tony Cai
  • TONY CAI
چکیده

Function estimation over the Besov spaces under pointwise r (1 ≤ r < ∞) risks is considered. Minimax rates of convergence are derived using a constrained risk inequality and wavelets. Adaptation under pointwise risks is also considered. Sharp lower bounds on the cost of adaptation are obtained and are shown to be attainable by a wavelet estimator. The results demonstrate important differences between the minimax properties under pointwise and global risk measures. The minimax rates and adaptation for estimating derivatives under pointwise risks are also presented. A general -risk oracle inequality is developed for the proofs of the main results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

Optimal Convergence Rates for Tikhonov Regularization in Besov Scales

Abstract. In this paper we deal with linear inverse problems and convergence rates for Tikhonov regularization. We consider regularization in a scale of Banach spaces, namely the scale of Besov spaces. We show that regularization in Banach scales differs from regularization in Hilbert scales in the sense that it is possible that stronger source conditions may lead to weaker convergence rates an...

متن کامل

Besov algebras on Lie groups of polynomial growth

We prove an algebra property under pointwise multiplication for Besov spaces defined on Lie groups of polynomial growth. When the setting is restricted to the case of H-type groups, this algebra property is generalized to paraproduct estimates.

متن کامل

On Block Thresholding in Wavelet Regression with Long Memory Correlated Noise

Johnstone and Silverman (1997) and Johnstone (1999) described a level-dependent thresholding method for extracting signals from both shortand long range dependent noise in the wavelet domain structure. It is shown that their Stein unbiased risk estimators (SURE) attain the exact optimal convergence rates in a wide range of Besov balls in certain asymptotic models of standard sample-data models....

متن کامل

Non-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces

We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003